
60 The Delphi Magazine Issue 31

Table Source Generator Expert
by Bob Swart

In this article we’ll develop a
variant of the nice and visual

database (or table) form expert.
Instead of a visual form, this expert
generates a unit which creates an
empty database table, using the
structure of an existing table.

Visual
Delphi is a visual RAD tool, which
means that Delphi users probably
do everything visually. From
designing forms and resources to
designing tables with the Borland
Database Desktop or the Database
Explorer. However, amidst this
visual violence, we often forget
that a form, designed with the
visual Database Form Expert,
needs the actual table, created
with the visual Database Desktop,
to be present when the TTable com-
ponent is set to Active. If the table
is not found, a BDE exception will
be raised. Which means that most
applications need to ship with the
required tables and index files.
This is of course all right in those
cases we’re shipping an applica-
tion that needs data to be present
in the tables, but it’s actually less
useful to ship a phonebook appli-
cation with nothing but empty
databases, ready to be filled by the
end-user, but present nonetheless.
To avoid having to include empty
tables, one could of course hand-
write code to create the table on
the fly when needed, using the
CreateTable method of the TTable
component. Unfortunately, it takes
quite some code to re-create a
table. And if your application uses
lots of tables, you need to write
code to create each of them. And
why should we? We’ve already cre-
ated them once visually, so why
not use that information to re-
create them when needed?

To solve this problem once and
for all (once I got sick and tired of
writing the same kind of table cre-
ating code again), I’ve written a
little Table Source Generator
Expert, that given a table, extracts

the structural information from the
table (fields names and types and
indexes) and generates code to re-
create the same, empty, table and
index files. The expert part should
be no surprise for readers of my
Under Construction column, and
looks like Listing 1.

Most methods are straightfor-
ward (and full source code is on
the disk, as usual), so we skip right
to the procedure Executewhere the
name of the table is asked, followed
by the extraction of the table, fields
and index structure information
and the generation of ObjectPascal
source code. Let’s look at the
source code for the Execute proce-
dure one step at a time.

The first part of the Execute pro-
cedure (Listing 2) is using an
TOpenDialog to ask for the specific
tablename to convert to source
code. Note that we’re looking for
Paradox .DB files by default. The
filepath is used as DatabaseName,

while the filename is used as
TableName. We’re not interested in
Aliases here. A dynamic TTable is
created with the DatabaseName and
TableName, and we’re ready to get
the information from it we want.

The second part (Listing 3)
starts the code generation with the
first few lines of the unit. The unit-
name is the same as the table-
name, and the unit filename is the
same as the table filename with the
.PAS extension instead of .DB. Note
again that we’re expecting Para-
dox table formats again (but you
are free to modify this to support
other formats as well). We haven’t
used any information from the
Table yet, by the way.

The third part (Listing 4) gets
interesting. Here we start using
information from the Table to
define the fields. We can either
Open the Table, or call Field-
Defs.Update to obtain the field
structural information. We’ve

Type
TTableSrcExpert = class(TIExpert)
public
{ Expert Style }
function GetStyle: TExpertStyle; override;
{ Expert Strings }
function GetIDString: String; override;
function GetName: String; override;

{$IFDEF WIN32}
function GetAuthor: String; override;

{$ENDIF}
function GetMenuText: String; override;
function GetState: TExpertState; override;
{ Launch the Expert }
procedure Execute; override;

end {TDataSrcExpert};

➤ Listing 1

procedure TTableSrcExpert.Execute;
var f: System.Text;

i: Integer;
begin
try
with TTable.Create(nil) do
try
with TOpenDialog.Create(nil) do
try
Title := GetName; { name of Expert as OpenDialog caption }
Filter := 'DB Files (*.db)|*.db';
Options := Options + [ofShowHelp, ofPathMustExist, ofFileMustExist];
if Execute then begin { not a showmodal! }
DatabaseName := ExtractFilePath(FileName);
TableName := ExtractFileName(FileName)

end
finally
Free

end;

➤ Listing 2

March 1998 The Delphi Magazine 61

done the latter here, so we don’t
have to actually open the table
(saves time and space). Field-
Defs.Count identifies the number of
fields in the Table (counting from 0
upwards), and FieldDefs can be
used as array property of type
TFieldDefs when it comes to the
values of FieldDefs[].Name, Field-
Defs[].DataType, FieldDefs[].Size
and FieldDefs[].Required. The
Name part is the easy one. To get the
Field Type, we need to get to the
DataType, which is of type
TFieldType, and use RTTI to obtain
the actual string representation of
the actual value. Since RTTI
changed representation from
Delphi 1 to 2, we need an IFDEF
here to distinguish between the
two implementations.

The only difference between the
16- and 32-bits version is that the
GetEnumName returns a pointer to a
string in the 16-bits version, and a
plain string in the 32-bits version.

So we need an extra ^ dereference
symbol. That’s all.

Now that we have all the fields,
names, size (only needed for memo
and blobs) and required informa-
tion, it’s time to look for any
indexes that are defined with this
table. To do that, we can use a

similar approach, by calling Index-
Defs.Update, (Listing 6).

The IndexDefs property has a
Name, list of Fields but also a set of
options. To print a string repre-
senting a set of options cannot be
done using RTTI, since more than
one actual option can be selected.
A separate function OptionNames
had to be written to look for the
presence of each option, and
appending it to the Result String
as shown in Listing 7.

And finally, after the fields and
index information has been re-
created, it’s time to write the call
CreateTable, and finish the rest of
the unit (Listing 8).

Now that we have an actual TTa-
bleSrcExpert, we can install it in
the Delphi IDE by installing the unit
TABLESRC as if it were a new compo-
nent. However, there’s also
another way to utilise an expert: by
simply creating it and calling the
Execute method ourselves. This
results in a very tiny program of
only 9 lines of code (recompile
using the command-line compil-
ers) that results in a handy pro-
gram to convert .DB and .DBF
tables into units that can re-create
those tables, (Listing 9).

If we compile the program above
and run it (in Windows 95), we get
a FileOpen Dialog that asks for a
database filename. Let’s select the
BIOLIFE.DB and see what happens
(Figure 1).

{generate the first part of the unit source}
System.Assign(f,ChangeFileExt(TableName,'.PAS'));
System.Rewrite(f);
writeln(f,'unit ',ChangeFileExt(TableName,''),';');
writeln(f,'interface');
writeln(f);
writeln(f,' procedure Create',ChangeFileExt(TableName,''),';');
writeln(f);
writeln(f,'implementation');
writeln(f,'uses DB, DBTables;');
writeln(f);
writeln(f,' procedure Create',ChangeFileExt(TableName,''),';');
writeln(f,' begin');
writeln(f,' with TTable.Create(nil) do');
writeln(f,' try');
writeln(f,' Active := False;');
writeln(f,' TableType := ttParadox;');
writeln(f,' TableName := ''',TableName,''';');

➤ Listing 3

FieldDefs.Update { get info without opening the database };
writeln(f,' with FieldDefs do');
writeln(f,' begin');
writeln(f,' Clear;');
for i:=0 to Pred(FieldDefs.Count) do begin
writeln(f,' ':8,'Add(''',FieldDefs[i].Name,''', ',
{$IFDEF Win32}
GetEnumName(TypeInfo(TFieldType), Ord(FieldDefs[i].DataType)),
{$ELSE}
GetEnumName(TypeInfo(TFieldType), Ord(FieldDefs[i].DataType))^,
{$ENDIF}

', ',FieldDefs[i].Size,', ', FieldDefs[i].Required,');')
end;
writeln(f,' end;');

➤ Listing 4

➤ Listing 5

{$IFDEF Win32}
GetEnumName(TypeInfo(TFieldType), Ord(FieldDefs[i].DataType))
{$ELSE}
GetEnumName(TypeInfo(TFieldType), Ord(FieldDefs[i].DataType))^
{$ENDIF}

➤ Figure 1

62 The Delphi Magazine Issue 31

The resulting unit BIOLIFE can be
used to re-create an empty table
called BIOLIFE but with exactly the
same structure (see Listing 10).

To test the just generated unit
BIOLIFE, all we need to do is write
another very tiny test program
(this time a Win32-only console
application), and call the Create-
BIOLIFE function. Be sure not to run
this program in the same directory
where the current BIOLIFE table
resides, because it will overwrite
the yable without questioning! Nor-
mally, you’d want to check for the
existence of the table (using File-
Exists) first before attempting to
re-create it, of course.

{$APPTYPE CONSOLE}
uses
BIOLIFE;

begin
CreateBIOLIFE;

end.

uses TableSrc;
begin
with TTableSrcExpert.Create do
try
Execute

finally
Free

end
end.

➤ Listing 9

IndexDefs.Update { get info without opening the database };
writeln(f,' with IndexDefs do');
writeln(f,' begin');
writeln(f,' Clear;');
for i:=0 to Pred(IndexDefs.Count) do begin
writeln(f,' ':8,'Add(''',IndexDefs[i].Name,''', ''', IndexDefs[i].Fields,
''', ', OptionNames(IndexDefs[i].Options),');')

end;
writeln(f,' end;');

➤ Listing 6

unit BIOLIFE;
interface
procedure CreateBIOLIFE;
implementation
uses
DB, DBTables;

procedure CreateBIOLIFE;
begin
with TTable.Create(nil) do
try
Active := False;
TableType := ttParadox;
TableName := 'BIOLIFE.DB';
with FieldDefs do begin
Clear;
Add('Species No', ftFloat, 0, FALSE);
Add('Category', ftString, 15, FALSE);
Add('Common_Name', ftString, 30, FALSE);
Add('Species Name', ftString, 40, FALSE);
Add('Length (cm)', ftFloat, 0, FALSE);
Add('Length_In', ftFloat, 0, FALSE);
Add('Notes', ftMemo, 50, FALSE);
Add('Graphic', ftGraphic, 0, FALSE);

end;
with IndexDefs do begin
Clear;
Add('', 'Species No', [ixPrimary,ixUnique]);

end;
CreateTable

finally
Free

end
end {CreateBIOLIFE};
end.

➤ Listing 10

writeln(f,' CreateTable');
writeln(f,' finally');
writeln(f,' Free');
writeln(f,' end');
writeln(f,' end {Create',
ChangeFileExt(TableName,''),'};');

writeln(f);
writeln(f,'end.');
System.Close(f)

finally
Free

end
except
HandleException

end
end {Execute};

end.

➤ Listing 8

function OptionNames(IndexOptions: TIndexOptions): String;
begin
Result := '[';
if ixPrimary in IndexOptions then
Result := Result + 'ixPrimary,';

if ixUnique in IndexOptions then
Result := Result + 'ixUnique,';

if ixDescending in IndexOptions then
Result := Result + 'ixDescending,';

if ixCaseInsensitive in IndexOptions then
Result := Result + 'ixCaseInsensitive,';

Delete(Result,Length(Result),1);
Result := Result + ']'

end {OptionNames};

➤ Listing 7

While it may seem trivial (or at
least less useful) to be able to re-
create the BIOLIFE table, consider
what it may do to your applica-
tions. Just image not having to
write table-creation code any
more. From now on, we only need
to visually define our tables, and
then run some experts to create
visual forms and non-visual table
re-creation code. The (empty)
tables no longer need to ship along-
side your application. That means
fewer files to install, less disk
space. Less development time. At
least for some of my projects I have
managed to save myself enough
time to justify the work invested in
this expert already!

Full source code for the Table
Source Generator Expert and appli-
cation is available on this month’s
disk. If you have any questions or
comments, just ask. Also, as an
extra bonus, I’ve included a copy of

my updated TableBob Wizard,
which can re-generate a table (in
Paradox format) and optionally
copy one or more fields from all
the records in the source table
(Access, Paradox, dBASE, etc.) to
the newly generated Paradox
table. It can also convert a table to
HTML webpages, so this should
save you even more time!

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
C++Builder and JBuilder for
Bolesian (at www.bolesian.com),
a freelance technical author for
The Delphi Magazine, co-author
of The Revolutionary Guide to
Delphi 2 and the electronic
knowledge base Delphi Internet
Solutions.

	Visual

